Source code for sc2bench.models.segmentation.base

from collections import OrderedDict

from torch.nn import functional
from torchdistill.common.constant import def_logger
from ..backbone import check_if_updatable
from ...analysis import AnalyzableModule, check_if_analyzable

logger = def_logger.getChild(__name__)


[docs] class UpdatableSegmentationModel(AnalyzableModule): """ An abstract class for updatable semantic segmentation model. :param analyzer_configs: list of analysis configurations :type analyzer_configs: list[dict] """ def __init__(self, analyzer_configs=None): super().__init__(analyzer_configs) self.bottleneck_updated = False def forward(self, *args, **kwargs): raise NotImplementedError()
[docs] def update(self, **kwargs): """ Updates compression-specific parameters like `CompressAI models do <https://interdigitalinc.github.io/CompressAI/models.html#compressai.models.CompressionModel.update>`_. This should be overridden by all subclasses. """ raise NotImplementedError()
[docs] def get_aux_module(self, **kwargs): """ Returns an auxiliary module to compute auxiliary loss if necessary like `CompressAI models do <https://interdigitalinc.github.io/CompressAI/models.html#compressai.models.CompressionModel.aux_loss>`_. This should be overridden by all subclasses. """ raise NotImplementedError()
[docs] class BaseSegmentationModel(UpdatableSegmentationModel): # Referred to the base implementation at https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/_utils.py __constants__ = ['aux_classifier'] """ A base, updatable segmentation model. :param backbone: backbone model (usually a classification model) :type backbone: nn.Module :param classifier: classification model :type classifier: nn.Module :param aux_classifier: auxiliary classification model to be used during training only :type aux_classifier: nn.Module or None :param analysis_config: analysis configuration :type analysis_config: dict or None """ def __init__(self, backbone, classifier, aux_classifier=None, analysis_config=None): if analysis_config is None: analysis_config = dict() super().__init__(analysis_config.get('analyzer_configs', list())) self.backbone = backbone self.classifier = classifier self.aux_classifier = aux_classifier def forward(self, x): input_shape = x.shape[-2:] # contract: features is a dict of tensors features = self.backbone(x) result = OrderedDict() x = features['out'] x = self.classifier(x) x = functional.interpolate(x, size=input_shape, mode='bilinear', align_corners=False) result['out'] = x if self.aux_classifier is not None: x = features['aux'] x = self.aux_classifier(x) x = functional.interpolate(x, size=input_shape, mode='bilinear', align_corners=False) result['aux'] = x return result
[docs] def update(self, **kwargs): """ Updates compression-specific parameters like `CompressAI models do <https://interdigitalinc.github.io/CompressAI/models.html#compressai.models.CompressionModel.update>`_. Needs to be called once after training to be able to later perform the evaluation with an actual entropy coder. """ if not check_if_updatable(self.backbone): raise KeyError(f'`backbone` {type(self)} is not updatable') self.backbone.update()
[docs] def get_aux_module(self, **kwargs): """ Returns an auxiliary module to compute auxiliary loss if necessary like `CompressAI models do <https://interdigitalinc.github.io/CompressAI/models.html#compressai.models.CompressionModel.aux_loss>`_. :return: auxiliary module :rtype: nn.Module """ return self.backbone.get_aux_module()
[docs] def activate_analysis(self): """ Activates the analysis mode. Should be called after training model. """ self.activated_analysis = True if check_if_analyzable(self.backbone): self.backbone.activate_analysis()
[docs] def deactivate_analysis(self): """ Deactivates the analysis mode. """ self.activated_analysis = False self.backbone.deactivate_analysis() if check_if_analyzable(self.backbone): self.backbone.deactivate_analysis()
[docs] def analyze(self, compressed_obj): """ Analyzes a given compressed object (e.g., file size of the compressed object). :param compressed_obj: compressed object to be analyzed :type compressed_obj: Any """ if not self.activated_analysis: return for analyzer in self.analyzers: analyzer.analyze(compressed_obj) if check_if_analyzable(self.backbone): self.backbone.analyze(compressed_obj)
[docs] def summarize(self): """ Summarizes the results that the configured analyzers store. """ for analyzer in self.analyzers: analyzer.summarize() if check_if_analyzable(self.backbone): self.backbone.summarize()
[docs] def clear_analysis(self): """ Clears the results that the configured analyzers store. """ for analyzer in self.analyzers: analyzer.clear() if check_if_analyzable(self.backbone): self.backbone.clear_analysis()
[docs] def check_if_updatable_segmentation_model(model): """ Checks if the given semantic segmentation model is updatable. :param model: semantic segmentation model :type model: nn.Module :return: True if the model is updatable, False otherwise :rtype: bool """ return isinstance(model, UpdatableSegmentationModel)