Source code for sc2bench.models.segmentation.deeplabv3

import torch
from torch.hub import load_state_dict_from_url
from torchdistill.common.main_util import load_ckpt
from torchvision.models.segmentation.deeplabv3 import DeepLabHead
from torchvision.models.segmentation.fcn import FCNHead

from .base import BaseSegmentationModel
from .registry import register_segmentation_model_func
from ..backbone import FeatureExtractionBackbone
from ..registry import load_classification_model

MODEL_URL_DICT = {
    'deeplabv3_resnet50_coco': 'https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth',
    'deeplabv3_resnet101_coco': 'https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth',
    'deeplabv3_mobilenet_v3_large': 'https://download.pytorch.org/models/deeplabv3_mobilenet_v3_large-fc3c493d.pth'
}


[docs] def create_deeplabv3(backbone, num_input_channels=2048, uses_aux=False, num_aux_channels=1024, num_classes=21): """ Builds DeepLabv3 model using a given updatable backbone model. :param backbone: backbone model (usually a classification model) :type backbone: nn.Module :param num_input_channels: number of input channels for classification head :type num_input_channels: int :param uses_aux: If True, add an auxiliary branch :type uses_aux: bool :param num_aux_channels: number of input channels for auxiliary classification head :type num_aux_channels: int :param num_classes: number of output classes of the model (including the background) :type num_classes: int :return: DeepLabv3 model :rtype: BaseSegmentationModel """ aux_classifier = None if uses_aux: aux_classifier = FCNHead(num_aux_channels, num_classes) classifier = DeepLabHead(num_input_channels, num_classes) return BaseSegmentationModel(backbone, classifier, aux_classifier)
[docs] @register_segmentation_model_func def deeplabv3_model(backbone_config, pretrained=True, pretrained_backbone_name=None, progress=True, num_input_channels=2048, uses_aux=False, num_aux_channels=1024, return_layer_dict=None, num_classes=21, analysis_config=None, analyzable_layer_key=None, start_ckpt_file_path=None, **kwargs): """ Builds DeepLabv3 model using a given updatable backbone model. :param backbone_config: backbone configuration :type backbone_config: dict :param pretrained: if True, returns a model pre-trained on COCO train2017 (torchvision) :type pretrained: bool :param pretrained_backbone_name: pretrained backbone name such as `'resnet50'`, `'resnet101'`, and `'mobilenet_v3_large'` :type pretrained_backbone_name: str :param progress: if True, displays a progress bar of the download to stderr :type progress: bool :param num_input_channels: number of input channels for classification head :type num_input_channels: int :param uses_aux: If True, add an auxiliary branch :type uses_aux: bool :param num_aux_channels: number of input channels for auxiliary classification head :type num_aux_channels: int :param return_layer_dict: mapping from name of module to return its output to a specified key :type return_layer_dict: dict :param num_classes: number of output classes of the model (including the background) :type num_classes: int :param analysis_config: analysis configuration :type analysis_config: dict or None :param analyzable_layer_key: key of analyzable layer :type analyzable_layer_key: str or None :param start_ckpt_file_path: checkpoint file path to be loaded for the built DeepLabv3 model :type start_ckpt_file_path: str or None :return: DeepLabv3 model with splittable backbone model :rtype: BaseSegmentationModel """ if analysis_config is None: analysis_config = dict() if return_layer_dict is None: return_layer_dict = {'layer4': 'out'} if uses_aux: return_layer_dict['layer3'] = 'aux' backbone = load_classification_model(backbone_config, torch.device('cpu'), False, strict=False) backbone_model = \ FeatureExtractionBackbone(backbone, return_layer_dict, analysis_config.get('analyzer_configs', list()), analysis_config.get('analyzes_after_compress', False), analyzable_layer_key=analyzable_layer_key) model = create_deeplabv3(backbone_model, num_input_channels=num_input_channels, uses_aux=uses_aux, num_aux_channels=num_aux_channels, num_classes=num_classes) if pretrained and pretrained_backbone_name in ('resnet50', 'resnet101'): state_dict = \ load_state_dict_from_url(MODEL_URL_DICT['deeplabv3_{}_coco'.format(pretrained_backbone_name)], progress=progress) model.load_state_dict(state_dict, strict=False) if start_ckpt_file_path is not None: load_ckpt(start_ckpt_file_path, model=model, strict=False) return model