Source code for torchdistill.models.registry

import torch

from ..common import misc_util

MODEL_DICT = dict()
ADAPTATION_MODULE_DICT = dict()
AUXILIARY_MODEL_WRAPPER_DICT = dict()
MODULE_DICT = misc_util.get_classes_as_dict('torch.nn')


[docs] def register_model(arg=None, **kwargs): """ Registers a model class or function to instantiate it. :param arg: class or function to be registered as a model. :type arg: class or typing.Callable or None :return: registered model class or function to instantiate it. :rtype: class or typing.Callable .. note:: The model will be registered as an option. You can choose the registered class/function by specifying the name of the class/function or ``key`` you used for the registration, in a training configuration used for :class:`torchdistill.core.distillation.DistillationBox` or :class:`torchdistill.core.training.TrainingBox`. If you want to register the class/function with a key of your choice, add ``key`` to the decorator as below: >>> from torch import nn >>> from torchdistill.models.registry import register_model >>> >>> @register_model(key='my_custom_model') >>> class CustomModel(nn.Module): >>> def __init__(self, **kwargs): >>> print('This is my custom model class') In the example, ``CustomModel`` class is registered with a key "my_custom_model". When you configure :class:`torchdistill.core.distillation.DistillationBox` or :class:`torchdistill.core.training.TrainingBox`, you can choose the ``CustomModel`` class by "my_custom_model". """ def _register_model(cls): key = kwargs.get('key') if key is None: key = cls.__name__ MODEL_DICT[key] = cls return cls if callable(arg): return _register_model(arg) return _register_model
[docs] def register_adaptation_module(arg=None, **kwargs): """ Registers an adaptation module class or function to instantiate it. :param arg: class or function to be registered as an adaptation module. :type arg: class or typing.Callable or None :return: registered adaptation module class or function to instantiate it. :rtype: class or typing.Callable .. note:: The adaptation module will be registered as an option. You can choose the registered class/function by specifying the name of the class/function or ``key`` you used for the registration, in a training configuration used for :class:`torchdistill.core.distillation.DistillationBox` or :class:`torchdistill.core.training.TrainingBox`. If you want to register the class/function with a key of your choice, add ``key`` to the decorator as below: >>> from torch import nn >>> from torchdistill.models.registry import register_adaptation_module >>> >>> @register_adaptation_module(key='my_custom_adaptation_module') >>> class CustomAdaptationModule(nn.Module): >>> def __init__(self, **kwargs): >>> print('This is my custom adaptation module class') In the example, ``CustomAdaptationModule`` class is registered with a key "my_custom_adaptation_module". When you configure :class:`torchdistill.core.distillation.DistillationBox` or :class:`torchdistill.core.training.TrainingBox`, you can choose the ``CustomAdaptationModule`` class by "my_custom_adaptation_module". """ def _register_adaptation_module(cls_or_func): key = kwargs.get('key') if key is None: key = cls_or_func.__name__ ADAPTATION_MODULE_DICT[key] = cls_or_func return cls_or_func if callable(arg): return _register_adaptation_module(arg) return _register_adaptation_module
[docs] def register_auxiliary_model_wrapper(arg=None, **kwargs): """ Registers an auxiliary model wrapper class or function to instantiate it. :param arg: class or function to be registered as an auxiliary model wrapper. :type arg: class or typing.Callable or None :return: registered auxiliary model wrapper class or function to instantiate it. :rtype: class or typing.Callable .. note:: The auxiliary model wrapper will be registered as an option. You can choose the registered class/function by specifying the name of the class/function or ``key`` you used for the registration, in a training configuration used for :class:`torchdistill.core.distillation.DistillationBox` or :class:`torchdistill.core.training.TrainingBox`. If you want to register the class/function with a key of your choice, add ``key`` to the decorator as below: >>> from torch import nn >>> from torchdistill.models.registry import register_auxiliary_model_wrapper >>> >>> @register_auxiliary_model_wrapper(key='my_custom_auxiliary_model_wrapper') >>> class CustomAuxiliaryModelWrapper(nn.Module): >>> def __init__(self, **kwargs): >>> print('This is my custom auxiliary model wrapper class') In the example, ``CustomAuxiliaryModelWrapper`` class is registered with a key "my_custom_auxiliary_model_wrapper". When you configure :class:`torchdistill.core.distillation.DistillationBox` or :class:`torchdistill.core.training.TrainingBox`, you can choose the ``CustomAuxiliaryModelWrapper`` class by "my_custom_auxiliary_model_wrapper". """ def _register_auxiliary_model_wrapper(cls_or_func): key = kwargs.get('key') if key is None: key = cls_or_func.__name__ AUXILIARY_MODEL_WRAPPER_DICT[key] = cls_or_func return cls_or_func if callable(arg): return _register_auxiliary_model_wrapper(arg) return _register_auxiliary_model_wrapper
[docs] def get_model(key, repo_or_dir=None, *args, **kwargs): """ Gets a model from the model registry. :param key: model key. :type key: str :param repo_or_dir: ``repo_or_dir`` for torch.hub.load. :type repo_or_dir: str or None :return: model. :rtype: nn.Module """ if key in MODEL_DICT and repo_or_dir is None: return MODEL_DICT[key](*args, **kwargs) elif repo_or_dir is not None: return torch.hub.load(repo_or_dir, key, *args, **kwargs) raise ValueError('model_name `{}` is not expected'.format(key))
[docs] def get_adaptation_module(key, *args, **kwargs): """ Gets an adaptation module from the adaptation module registry. :param key: model key. :type key: str :return: adaptation module. :rtype: nn.Module """ if key in ADAPTATION_MODULE_DICT: return ADAPTATION_MODULE_DICT[key](*args, **kwargs) elif key in MODULE_DICT: return MODULE_DICT[key](*args, **kwargs) raise ValueError('No adaptation module `{}` registered'.format(key))
[docs] def get_auxiliary_model_wrapper(key, *args, **kwargs): """ Gets an auxiliary model wrapper from the auxiliary model wrapper registry. :param key: model key. :type key: str :return: auxiliary model wrapper. :rtype: nn.Module """ if key in AUXILIARY_MODEL_WRAPPER_DICT: return AUXILIARY_MODEL_WRAPPER_DICT[key](*args, **kwargs) raise ValueError('No auxiliary model wrapper `{}` registered'.format(key))